Кибернетика

Примечания

  1. Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — С. 259. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5.
  2. «Энциклопедия кибернетики» под ред. В. М. Глушкова, т.1., Киев, 1974 — с. 440.
  3. Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine. (Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948)
  4. Kelly, Kevin. Out of control: the new biology of machines, social systems and the economic world (англ.). — Boston: Addison-Wesley, 1994. — ISBN 0-201-48340-8.
  5. Couffignal, Louis. «Essai d’une définition générale de la cybernétique», The First International Congress on Cybernetics, Namur, Belgium, June 26-29, 1956, Gauthier-Villars, Paris, 1958, pp. 46—54
  6. . slovariki.org. Дата обращения 25 мая 2016.
  7. Цитируется по сборнику «Кибернетика ожидаемая. Кибернетика неожиданная». — М.: Наука, 1968. — стр. 152.
  8. Jean-Pierre Dupuy. «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
  9. Peter Harries-Jones. «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
  10. Kenneth D. Bailey. Sociology and the New Systems Theory: Toward a Theoretical Synthesis, 1994, p.163.
  11. Kenneth D. Bailey. Sociology and the New Systems Theory: Toward a Theoretical Synthesis, 1994.
  12. Kevin Kelly. «Out of control: The new biology of machines, social systems and the economic world», 1994, Addison-Wesley ISBN 0-201-48340-8

Техническая кибернетика

Техническая кибернетика — наука об управлении техническими системами. Методы и идеи технической кибернетики вырастали вначале параллельно и независимо в отдельных технических дисциплинах, относящихся к связи и управлению. В автоматике, радиоэлектронике, телеуправлении, вычислительной технике и т. д. По мере выяснения общности, основной задач теории и методов их решения, формировались положения технической кибернетики, образующей единую теоретическую базу для всех областей техники связи и управления.

Техническая кибернетика, как и кибернетика вообще, изучает процессы управления безотносительно к физическим природе систем, в которых происходят эти процессы. Центральная задача технической кибернетики — синтез эффективных алгоритмов управления с целью определения их структуры, характеристик и параметров. Под эффективными алгоритмами понимаются правила переработки входной информации в выходные сигналы управления, которые являются успешными в определенном смысле.

Техническая кибернетика теснейшим образом связана с автоматикой и телемеханикой, но не совпадает с ними, поскольку в технической кибернетике не рассматриваются вопросы конструирования конкретной аппаратуры. Техническая кибернетика связана также с другими направлениями кибернетики, например, добытые биологическими науками сведения облегчают разработку новых принципов управления, в т.ч. принципов построения новых типов автоматов, моделирующих сложные функции умственной деятельности человека.

Техническая кибернетика возникшая из потребностей практики, широко использующая математический аппарат, является сейчас одним из наиболее разработанных разделов кибернетики. Поэтому прогресс технической кибернетики существенно способствует развитию других ветвей, направлений и разделов кибернетики.

   Развитие технической кибернетики

Значительное место в технической кибернетике занимает теория оптимальных алгоритмов или, что по существу то же, теория оптимальной стратегии автоматического управления, обеспечивающей экстремум некоторого критерия оптимальности.

В различных случаях критерии оптимальности могут быть разными. Например, в одном случае может потребоваться максимальная быстрота переходных процессов, в другом — минимальный разброс значений некоторой величины и т. д. Однако существуют общие методы формулировки и решения самых разнообразных задач этого рода.

В результате решения задачи определяется оптимальный алгоритм управления в автоматической системе, либо оптимальный алгоритм распознавания сигналов на фоне шумов в приемнике системы связи и т. д.

Другое важное направление в технической кибернетике — разработка теории и принципов действия систем с автоматическим приспособлением. Которое заключается в целенаправленном изменении свойств системы или ее частей, обеспечивающем возрастающую успешность ее действий

В этой области имеют большое значение системы автоматической оптимизации, приводимые поиском автоматическим к оптимальному режиму функционирования и поддерживаемые вблизи этого режима при непредвиденных заранее внешних воздействиях.

Третьим направлением является разработка теории сложных систем управления, состоящих из большого количества элементов, включающих сложные взаимосвязи частей и работающих в трудных условиях.

Большое значение для технической кибернетики имеют теория информации и теория алгоритмов, в частности теория конечных автоматов.

Теория конечных автоматов занимается синтезом автоматов по заданным условиям работы и в том числе решением проблемы «черного ящика» — определением возможной внутренней структуры автомата по результатам изучения его входов и выходов, а также другими проблемами, например, вопросами осуществимости автоматов определенного типа.

Любые системы управления так или иначе связаны с человеком, который их проектирует, налаживает, контролирует, управляет их работой и использует результаты работы систем в своих целях. Отсюда возникают проблемы взаимодействия человека с комплексом автоматических устройств и обмена информации между ними.

Решение этих проблем необходимо для разгрузки нервной системы человека от напряженной и рутинной работы и обеспечения максимальной эффективности всей системы «человек — автомат». Важнейшая задача технической кибернетики — моделирование все более сложных форм умственной деятельности человека с целью замены человека автоматами там, где это возможно и разумно. Поэтому в технической кибернетике развиваются теории и принципы построения различного рода обучающихся систем, которые путем тренировки или обучения целенаправленно изменяют свой алгоритм.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею.
Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х годах XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.

Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.

Особенно велика роль кибернетики в психологии труда и таких её отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма.
Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего.
Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии.
Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.

Направления

Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.

Чистая кибернетика

Чистая кибернетика, или кибернетика второго порядка изучает системы управления как понятие, пытаясь обнаружить основные её принципы.

ASIMO использует датчики и интеллектуальные алгоритмы, чтобы избежать препятствий и перемещаться по лестнице

  • Искусственный интеллект
  • Кибернетика второго порядка
  • Компьютерное зрение
  • Системы управления
  • Эмерджентность
  • Обучающиеся организации
  • Новая кибернетика
  • Interactions of Actors Theory
  • Теория общения

В биологии

Кибернетика в биологии — это исследование кибернетических систем в биологических организмах, изучающее то, как животные приспосабливаются к окружающей их среде, и, как информация в форме генов может перейти от поколения к поколению.
Также имеется второе направление — киборги.

Термический снимок пойкилотермного паука-птицееда на руке гомойотермного человека

  • Биоинженерия
  • Биологическая кибернетика
  • Биоинформатика
  • Бионика
  • Медицинская кибернетика
  • Нейрокибернетика
  • Гомеостаз
  • Синтетическая биология
  • Системная биология

Теория сложных систем

Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.

Способ моделирования сложной адаптивной системы

  • Сложная адаптивная система
  • Сложные системы
  • Теория сложных систем

В вычислительной технике

В вычислительной технике методы кибернетики применяются для управления устройствами и анализа информации.

  • Робототехника
  • Система поддержки принятия решений
  • Клеточный автомат
  • Симуляция
  • Компьютерное зрение
  • Искусственный интеллект
  • Распознавание объектов
  • Система управления
  • АСУ

В инженерии

Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.

Искусственное сердце, пример биомедицинской инженерии.

  • Адаптивная система
  • Эргономика
  • Биомедицинская инженерия
  • Нейрокомпьютинг
  • Техническая кибернетика
  • Системотехника

Что такое кибернетика?

Кибернетика — это обширная область, охватывающая изучение систем, которые являются механическими, биологическими, социальными, физическими или когнитивными по своей природе. Основателем этой науки считается американский ученый Винер Норберт.

Кибернетика

Кибернетика применима к системам, которые имеют замкнутые сигнальные контуры. В этом типе замкнутой системы сигнал, генерируемый внутри системы, запускает изменения в системной среде, и это изменение также запускает некоторые типы системных изменений. Следовательно, это замкнутый цикл, в котором действие и его реакция происходят в одной и той же системной среде.

Кибернетика повлияла на множество областей исследования, включая теорию систем, философию, теорию игр, контроль восприятия, архитектуру, искусственный интеллект и многие другие. Тем не менее, основная цель остается той же — изучение систем управления для всех основных механизмов.

Обзор

Термин «кибернетика» изначально ввёл в научный оборот Ампер, который в своём фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний», первая часть которого вышла в свет в 1834 году, вторая в 1843 году, определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. В современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, термин впервые был предложен Норбертом Винером в 1948 году.

Кибернетика включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации

Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Кибернетика
Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Согласно другому определению кибернетики, предложенному в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, кибернетика — это «искусство обеспечения эффективности действия».

Ещё одно определение предложено Льюисом Кауфманом (англ.): «Кибернетика — это исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

По словарю Ожегова: «Кибернетика — наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась, включая в себя исследования в различных областях систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием: теория управления, теория игр, теория систем (математический аналог кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Современное понимание науки

Впервые термин «кибернетика» в научном контексте был использован в трудах древнегреческих ученых. Под этим словом они понимали искусство чиновника, управляющего городом. Однако ни это определение, ни определение Андре-Мари Ампера, упомянутое выше, не отражает современные представления о ней. В XX веке термин был переосмыслен учеными, поспособствовавшими становлению нового научного направления. Например, Луи Куффиньяль называл ее искусством обеспечения эффективности действия, а Стаффорд Вир — наукой о правильном управлении в какой-либо совокупности.

Важно! Ученые до сих пор спорят о том, что такое кибернетика. Среди них нет согласия в том, какое определение их науки — наиболее правильное и точное

Самым известным является вариант, предложенный Норбертом Винером.

Согласно Винеру, это наука, которая занимается изучением общих закономерностей работы с информацией в сложных системах управления. Она рассматривает четыре основные операции с информацией:

  • получение,
  • передача,
  • хранение,
  • модификация.

Кибернетика как наука, зародившаяся на стыке междисциплинарных исследований, нашла обширное применение и в точных видах познания, и в социальной сфере.

Основные разделы кибернетики

В качестве основных разделов кибернетики могут быть выделены:

  • теория информации
  • теория методов управления (программирования)
  • теория систем управления

Теория информации изучает способы восприятия, преобразования и передачи информации. Информация передается при помощи сигналов — физических процессов, у которых определенные параметры находятся в однозначном соответствии с передаваемой информацией. Установление такого соответствия называется кодированием.

Центральным понятием теории информации является мера количества информации, определяемая как изменение степени неопределенности в ожидании некоторого события, о котором говорится в сообщении до и после получения сообщения. Эта мера позволяет измерять количество информации в сообщениях подобно тому, как в физике измеряется количество энергии или количество веществ. Смысл и ценность передаваемой информации для получателя при этом не учитываются.

Теория программирования занимается изучением и разработкой методов переработки и использования информации для управления. Программирование работы любой системы управления в общем случае включает в себя:

  • определение алгоритма нахождения решений
  • составление программы в коде, воспринимаемом данной системой

Нахождение решений сводится к переработке заданной входной информации в соответствующую выходную информацию (команды управления), обеспечивающую достижение поставленные цели. Оно осуществляется на основе некоторого математического метода, представленного в виде алгоритма. Наиболее развитыми являются математические методы определения оптимальных решений. Такие, как линейное программирование и динамическое программирование, а также методы выработки статистических решений в теории игр.

Теория алгоритмов, используемая в кибернетике, изучает формальные способы описания процессов переработки информации в виде условных математических схем — алгоритмов. Основное место занимают здесь вопросы построения алгоритмов для различных классов процессов и вопросы тождественных (равносильных) преобразований алгоритмов.

   Программирование для управления

Основной задачей теории программирования является выработка методов автоматизации процессов переработки информации на электронных программно-управляемых машинах. Основную роль играют здесь вопросы автоматизации программирования. Т. е. вопросы составления программ решения различных задач на машинах с помощью этих машин.

С точки зрения сравнительного анализа процессов переработки информации в различных естественно и искусственно организованных системах кибернетика выделяет следующие основные классы процессов:

  • мышление и рефлекторная деятельность живых организмов
  • изменение наследственной информации в процессе эволюции биологических видов
  • переработка информации в автоматических системах
  • переработка информации в экономических и административных системах
  • переработка информации в процессе развития науки

Выяснение общих закономерностей этих процессов составляет одну из основных задач кибернетики.

Теория систем управления изучает структуру и принципы построения таких систем и их связи с управляемыми системами и внешней средой. Системой управления в общем случае может быть назван любой физический объект, осуществляющий целенаправленную переработку информации. Это может быть, нервная система животного, система автоматического управления движением самолета и др.).

Кибернетика изучает абстрактные системы управления, представленные в виде математических схем (моделей), сохраняющих информационные свойства соответствующих классов реальных систем. В рамках кибернетики возникла специальная математическая дисциплина — теория автоматов. Она изучает специальный класс дискретных систем переработки информации, включающих в себя большое число элементов и моделирующих работу нейронных сетей.

Кибернетика выделяет два общих принципа построения систем управления: обратной связи и многоступенчатости (иерархичности) управления. Принцип обратной связи позволяет системе управления постоянно учитывать фактическое состояние всех управляемых органов и реальных воздействий внешней среды. Многоступенчатая схема управления обеспечивает экономичность и устойчивость системы управления.

Чем занимаются кибернетики?

Кибернетика

Кибернетик – это ученый, который занимается целым спектром разнообразных исследований:

  • Искусственный интеллект.
  • Человеческий организм.
  • Сложные информационные системы, такие как компьютеры и их сети.

Кибернетика делится на множество разнообразных отраслей, которые базируются на связях между определенными научными дисциплинами. Например, есть психологичная кибернетика, экономическая или техническая. В общем, существует целый спектр отраслей, на которые распространяется кибернетика. Это очень распространённая наука, которая используется везде. Давайте более детально разберемся с ветками данной дисциплины.

Кибернетика

Современные достижения и пути развития

Смена ориентиров

Конец XX века стал определяющим периодом для кибернетики как науки. В конце 60-х это направление лишилось поддержки со стороны научного сообщества и столкнулось с проблемой выбора дальнейшего пути развития. Возрождение произошло в 70-х годах, когда биологи занялись разработкой новой кибернетической концепции, применимой для природных организаций и систем, не изобретенных человеком. История кибернетики получила новое направление для развития.

В 1980-х появилась «новая кибернетика», которая изучала взаимодействие политических подгрупп и элементов, создающих структуру политического сообщества. Была выработана новая концепция информации — ее стали рассматривать как нечто, созданное человеком в процессе взаимодействия с окружающей средой. Одной из главных задач новой кибернетики стало разрешение противоречия между микро- и макроанализом. Акцент с управляемой сместился к управляющей системе, а также к межсистемным связям.

Кибертехнологии

КибернетикаГоворя о практических достижениях, нужно отметить появление отдельного направления, которое связано с разработкой и созданием кибернетических организмов. Главным образом кибертехнологии позволили совершить прорыв в медицине и улучшить жизнь людей с тяжелыми травмами и заболеваниями.

Важным этапом в этой сфере стало изобретение и повсеместное применение кохлеарных имплантатов — они позволяют улучшить восприятие звуков у слабослышащих людей. Существуют и глазные электронные имплантаты, но пока что они менее распространены из-за сложности производства и вживления пациентам.

Также кибертехнологии позволили создать бионические протезы — искусственные руки и ноги, принимающие и откликающиеся на сигналы нервной системы, успешно имплантируют пациентам с ампутированными конечностями.

Интересных результатов в нулевые годы добились американские ученые, которые создали управляемых жуков, подключив электроды к нервным узлам насекомых. Таким образом им удалось контролировать полет одного из жуков в течение получаса.

Следующая цель ученых — создание искусственного сердца, которое можно будет использовать в качестве имплантата. В 2011 году врачам удалось вживить подобное сердце пациенту, но после этого он прожил всего месяц. Исследования продолжаются, и ученые полагают, что в будущем достижения в области кибернетики позволят им создать полноценную замену любому человеческому органу.

Чему нас учит кибернетика

О науке Кибернетике

Литература

  • Винер Н. Кибернетика. — М.: Советское радио, .
  • Китов А. И. Техническая кибернетика // Радио (№ 11), 1955.
  • Китов А. И., Ляпунов А. А., Полетаев И. А., Яблонский С. В. О кибернетике // Труды 3-го Всесоюзного математического съезда. Том 2. М., 1956.
  • Китов А. И. Кибернетика и управление народным хозяйством // Кибернетику — на службу коммунизму. Сборник статей под редакцией А. И. Берга. Том 1. М.-Л.: Госэнергоиздат, 1961.
  • Берг А. И., Китов А. И., Ляпунов А. А. Кибернетика в военном деле // Военная мысль, 1961.
  • Китов А. И. Кибернетика в управлении хозяйством // М. Экономическая газета. Август 1961, № 4.
  • Китов А. И., Ляпунов А. А. Кибернетика в технике и экономике // Вопросы философии (№ 9), 1961.
  • Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
  • Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
  • Марков А. А. Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, .
  • Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971.
  • Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, .
  • В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
  • Бирюков Б. В., Спиркин А. Г. Кибернетика и логика. — М.: Наука, 1978. — 333 с.
  • Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л. Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.
  • Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.
  • Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25 000 экз.
  • Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, .
  • Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
  • Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома учёных им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
  • Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.
  • Теплов Л. П. Очерки о кибернетике. — М.: Московский рабочий, 1963. — Тираж 50000 экз. — 413 c.

Примечания Править

  1. Jean-Pierre Dupuy, «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
  2. Peter Harries-Jones (1988), «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
  3. Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.
  4. Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis
  5. Kevin Kelly (1994) «Out of control: The new biology of machines, social systems and the economic world» Addison-Wesley ISBN 0-201-48340-8

ИсторияПравить

Андре Мари Ампер

Джеймс Уатт

В древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми.

XX векПравить

Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.

Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался.

Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950).

Норберт Винер

Кибернетика в СССРПравить

Упадок и возрождение Править

Франциско Варела

Стюарт А. Амплеби

В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.

Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области.

Выводы

Мы разобрались, что такое кибернетика. Значение этого слова стало нам понятно. И это прекрасно. Не нужно теперь думать, что означает слово “кибернетика”, так как некоторые люди, возможно, даже решили посвятить данной науке свою жизнь после прочтения этой статьи. Хочется на это надеяться. Ученый-кибернетик может считаться универсальным специалистом в любой сфере. Ведь большая часть областей нашей жизни базируется на управляемых системах, которые входят в сферу изучения этой науки. Поскольку она становится с каждым днем все популярнее, то можно смело говорить: за искусственным интеллектом – будущее. Кибернетик – это настоящий универсал. Этим он и ценен.

Источники

  • https://mentamore.com/robototexnika/kibernetika.html
  • https://future2day.ru/chto-takoe-kibernetika-chto-izuchaet-i-dlya-chego-nuzhna/
  • https://dic.academic.ru/dic.nsf/ruwiki/965284
  • https://FB.ru/article/207993/kibernetik—eto-chto-za-uchenyiy
  • https://tvercult.ru/literatura/osnovyi-kibertehnologiy-kto-byil-osnovopolozhnikom-kibernetiki
  • https://dic.academic.ru/dic.nsf/ruwiki/8171
Михаил Фирсов
Оцените автора
( Пока оценок нет )
Добавить комментарий