Кислород

Историческая справка.

Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777).

Получение и применение.

Благодаря наличию свободного кислорода в атмосфере наиболее эффективным методом его извлечения является сжижение воздуха, из которого удаляют примеси, CO2, пыль и т.д. химическими и физическими методами. Циклический процесс включает сжатие, охлаждение и расширение, что и приводит к сжижению воздуха. При медленном подъеме температуры (метод фракционной дистилляции) из жидкого воздуха испаряются сначала благородные газы (наиболее трудно сжижаемые), затем азот и остается жидкий кислород. В результате жидкий кислород содержит следы благородных газов и относительно большой процент азота. Для многих областей применения эти примеси не мешают. Однако для получения кислорода особой чистоты процесс дистилляции необходимо повторять. Кислород хранят в танках и баллонах. Он используется в больших количествах как окислитель керосина и других горючих в ракетах и космических аппаратах. Сталелитейная промышленность потребляет газообразный кислород для продувки через расплав чугуна по методу Бессемера для быстрого и эффективного удаления примесей C, S и P. Сталь при кислородном дутье получается быстрее и качественнее, чем при воздушном. Кислород используется также для сварки и резки металлов (кислородно-ацетиленовое пламя). Применяют кислород и в медицине, например, для обогащения дыхательной среды пациентов с затрудненном дыханием. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике.

Пероксид водорода.

Другим соединением, состоящим только из водорода и кислорода, является пероксид водорода H2O2. Название «пероксид» принято для соединений, содержащих связь –O–O–. Пероксид водорода имеет строение асимметрично изогнутой цепи:

Пероксид водорода получают по реакции пероксида металла с кислотой

BaO2 + H2SO4 BaSO4 + H2O2

либо разложением пероксодисерной кислоты H2S2O8, которую получают электролитически:

Концентрированный раствор H2O2 может быть получен специальными методами дистилляции. Пероксид водорода используют как окислитель в двигателях ракет. Разбавленные растворы пероксида служат антисептиками, отбеливателями и мягкими окислителями. H2O2 добавляют ко многим кислотам и оксидам для получения соединений, аналогичных гидратам. В присутствии сильного окислителя (например, MnO2 или MnO4–) H2O2 окисляется, выделяя кислород и воду.

Термическая диссоциация.

Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO 2Hg + O2. Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца:

Диоксид марганца, добавляемый в небольших количествах перед прокаливанием, позволяет поддерживать требуемую температуру и скорость диссоциации, причем сам MnO2 в процессе не изменяется.

Используются также способы термического разложения нитратов:

а также пероксидов некоторых активных металлов, например:

2BaO2 2BaO + O2

Последний способ одно время широко использовался для извлечения кислорода из атмосферы и заключался в нагревании BaO на воздухе до образования BaO2 с последующим термическим разложением пероксида. Способ термического разложения сохраняет свое значение для получения пероксида водорода.

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
Атомный номер 8
Атомная масса 15,9994
Температура плавления, °С –218,4
Температура кипения, °С –183,0
Плотность  
твердый, г/см3 (при tпл) 1,27
жидкий г/см3 (при tкип) 1,14
газообразный, г/дм3 (при 0° С) 1,429
относительная по воздуху 1,105
критическаяа, г/см3 0,430
Критическая температураа, °С –118,8
Критическое давлениеа, атм 49,7
Растворимость, см3/100 мл растворителя  
в воде (0° С) 4,89
в воде (100° С) 1,7
в спирте (25° С) 2,78
Радиус, Å 0,74
ковалентный 0,66
ионный (О2–) 1,40
Потенциал ионизации, В  
первый 13,614
второй 35,146
Электроотрицательность (F = 4) 3,5
а Температура и давление, при которых плотность газа и жидкости одинаковы.

[править] Применение

Кислород воздуха имеет чрезвычайно важное значение для процессов горения. Сжигая различные виды топлива, получают тепло, которое используют для удовлетворения самых различных потребностей, в том числе для преобразования его в механическую и электрическую энергию

При участии кислорода воздуха сгорает топливо на теплоэлектростанциях, топливо в двигателях автомобилей, выжигают металлические руды на заводах цветной металлургии.

Сварка и резка металлов

Чистый кислород с ацетиленом широко используют для так называемой автогенной сварки стальных труб и других металлических конструкций и их резки. Для этого служит специальная горелка, который состоит из двух металлических трубок, вставленных друг в друга. В пространство между трубками пропускают ацетилен и зажигают, а затем по внутренней трубке пропускают кислород. Оба газа, подаются из баллонов под давлением. Температура в кислородно-ацетиленовом пламени — до 2000 ° C, при такой температуре плавится большинство металлов.

В медицине

Кислород — биогенный химический элемент, обеспечивающий дыхание большинства живых организмов на Земле. Физиологическое действие кислорода разностороннее, решающее значение в его лечебном эффекте имеет способность возмещать дефицит кислорода в тканях организма при гипоксии (недостаточного снабжения тканей кислородом или нарушения его усвоения).

Ингаляцией (вдыханием) кислорода широко пользуются при различных заболеваниях, сопровождающихся гипоксией (нехваткой кислорода): при заболеваниях органов дыхания (пневмония, отек легких и т. д.), сердечно-сосудистой системы (сердечная недостаточность, коронарная недостаточность, резкое падение артериального давления и т. п.), отравлениях угарным газом, синильной кислотой, удушающими веществами (хлор, фосген и др.), а также при других заболеваниях с нарушением функции дыхания и окислительных процессов.

В анестезиологической практике кислород широко применяется в смеси с ингаляционными наркотическими анальгетиками. Чистым кислородом и смесью его с углекислотой пользуются при ослаблении дыхания в послеоперационном периоде, при интоксикациях и т. д.

Широко пользуются кислородом для так называемой гипербарической оксигенации — применения кислорода под повышенным давлением. Установлена ​​высокая эффективность этого метода в хирургии, интенсивной терапии тяжелых заболеваний, особенно в кардиологии, реаниматологии, неврологии и других областях медицины.

Применяют также энтеральную оксигенотерапию (введение кислорода в кишечник или желудок) путем введения в желудок кислородной пены, применяемой в виде так называемого кислородного коктейля. Используется для общего улучшения обменных процессов в комплексной терапии сердечно-сосудистых заболеваний, нарушений обмена веществ и других патологических состояний, связанных с кислородной недостаточностью организма.

Чистым кислородом пользуются для дыхания также летчики при высоких полетах, водолазы, на подводных лодках и т. п.

Кислородные подушки применяют при некоторых заболеваниях для облегчения дыхания.

Методы получения

Способ производства кислорода зависит от того, какое количество газа требуется получить. Лабораторные методы следующее:

1. Термическое разложение некоторых солей, таких как хлорат калия или нитрат калия:

  • 2KClO3 → 2KCl + 3O2.
  • 2KNO3 → 2KNO2 + O2.

Разложение хлората калия катализируется оксидами переходных металлов. Для этого часто используется диоксид марганца (пиролюзит, MnO2). Катализатор снижает температуру, необходимую для выделения кислорода, с 400 до 250 °С.

2. Разложение оксидов металлов под действием температуры:

  • 2HgO → 2Hg + O2.
  • 2Ag2O → 4Ag + O2.

Шееле и Пристли для получения этого химического элемента использовали соединение (оксид) кислорода и ртути (II).

3. Термическое разложение металлических пероксидов или перекиси водорода:

  • 2BaO + O2 → 2BaO2.
  • 2BaO2 → 2BaO +O2.
  • BaO2 + H2SO4 → H2O2 + BaSO4.
  • 2H2O2 → 2H2O +O2.

Первые промышленные методы выделения кислорода из атмосферы или для производства перекиси водорода зависели от образования пероксида бария из оксида.

4. Электролиз воды с небольшими примесями солей или кислот, которые обеспечивают проводимость электрического тока:

2H2O → 2H2 + O2

Кислород

Примечания

Комментарии
  1. Указан диапазон значений атомной массы в связи с неоднородностью распространения изотопов в природе.
Источники
  1. Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 387. — 671 с. — 100 000 экз.
  2. J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  3. W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  4. Кнунянц И. Л. и др. Химическая энциклопедия. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 387—389. — 671 с. — 100 000 экз.
  5. Я. А. Угай. Общая и неорганическая химия. — Москва: Высшая школа, 1997. — С. 432—435. — 527 с.
  6. Campbell, Neil A.; Reece, Jane B. Biology, 7th Edition. — San Francisco: Pearson – Benjamin Cummings, 2005. — С. 522–23. — ISBN 0-8053-7171-0.
  7. Freeman, Scott. Biological Science, 2nd. — Upper Saddle River, NJ: Pearson – Prentice Hall, 2005. — P. 214, 586. — ISBN Biological Science, 2nd.
  8. Радиационная химия // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 200. — ISBN 5-7155-0292-6.
  9. Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28—33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4.
  10. Вредные химические вещества: Неорганические соединения элементов V—VIII групп. Справочник. — Л., 1989. — С. 150—170

Реакции.

В соответствующих условиях молекулярный кислород реагирует практически с любым элементом, кроме благородных газов. Однако при комнатных условиях только наиболее активные элементы реагируют с кислородом достаточно быстро. Вероятно, большинство реакций протекает только после диссоциации кислорода на атомы, а диссоциация происходит лишь при очень высоких температурах. Однако катализаторы или другие вещества в реагирующей системе могут способствовать диссоциации O2. Известно, что щелочные (Li, Na, K) и щелочноземельные (Ca, Sr, Ba) металлы реагируют с молекулярным кислородом с образованием пероксидов:

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

2HgO →ot 2Hg+O2↑{\displaystyle {\mathsf {2HgO\ {\xrightarrow {^{o}t}}\ 2Hg+O_{2}\uparrow }}}

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Промышленное производство

При необходимости получить большие объемы кислорода применяют фракционную перегонку жидкого воздуха. Из основных компонентов воздуха он имеет самую высокую температуру кипения и, следовательно, по сравнению с азотом и аргоном менее летучий. В процессе используется охлаждение газа при его расширении. Основные этапы операции следующее:

  • воздух фильтруется для удаления твердых частиц;
  • влага и углекислый газ удаляются путем абсорбции в щелочи;
  • воздух сжимается, и теплота сжатия удаляется обычными процедурами охлаждения;
  • затем он поступает в змеевик, находящийся в камере;
  • часть сжатого газа (при давлении около 200 атм) расширяется в камере, охлаждая змеевик;
  • расширенный газ возвращается в компрессор и проходит несколько стадий последующего расширения и сжатия, в результате чего при температуре -196 °C воздух становится жидким;
  • жидкость нагревается для перегонки первых легких инертных газов, затем азота, а жидкий кислород остается. Многократное фракционирование производит продукт, достаточно чистый (99,5%) для большинства промышленных целей.

Получение

Перегонка жидкого воздуха

В настоящее время в промышленности кислород получают из воздуха.
Основным промышленным способом получения кислорода является криогенная ректификация.
Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMnO4→K2MnO4+MnO2+O2↑{\displaystyle {\mathsf {2KMnO_{4}\rightarrow K_{2}MnO_{4}+MnO_{2}+O_{2}\uparrow }}}

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца(IV):

2H2O2 →MnO2 2H2O+O2↑{\displaystyle {\mathsf {2H_{2}O_{2}\ {\xrightarrow {MnO_{2}}}\ 2H_{2}O+O_{2}\uparrow }}}

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3→2KCl+3O2↑{\displaystyle {\mathsf {2KClO_{3}\rightarrow 2KCl+3O_{2}\uparrow }}}

Разложение оксида ртути(II) (при t = 100 °C) было первым методом синтеза кислорода:

2HgO→100oC 2Hg+O2↑{\displaystyle {\mathsf {2HgO{\xrightarrow {100^{o}C}}\ 2Hg+O_{2}\uparrow }}}

Электролиз водных растворов

К лабораторным способам получения кислорода относится метод электролиза разбавленных водных растворов щелочей, кислот и некоторых солей (сульфатов, нитратов щелочных металлов):

2H2O→e− 2H2+O2↑{\displaystyle {\mathsf {2H_{2}O{\xrightarrow {e-}}\ 2H_{2}+O_{2}\uparrow }}}

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2+2CO2→2Na2CO3+O2↑{\displaystyle {\mathsf {2Na_{2}O_{2}+2CO_{2}\rightarrow 2Na_{2}CO_{3}+O_{2}\uparrow }}}

Для соблюдения баланса объемов поглощенного углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространенная степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

4Li+O2→2Li2O{\displaystyle {\mathsf {4Li+O_{2}\rightarrow 2Li_{2}O}}}
2Sr+O2→2SrO{\displaystyle {\mathsf {2Sr+O_{2}\rightarrow 2SrO}}}

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

2NO+O2→2NO2↑{\displaystyle {\mathsf {2NO+O_{2}\rightarrow 2NO_{2}\uparrow }}}

Окисляет большинство органических соединений в реакциях горения:

2C6H6+15O2→12CO2+6H2O{\displaystyle {\mathsf {2C_{6}H_{6}+15O_{2}\rightarrow 12CO_{2}+6H_{2}O}}}
CH3CH2OH+3O2→2CO2+3H2O{\displaystyle {\mathsf {CH_{3}CH_{2}OH+3O_{2}\rightarrow 2CO_{2}+3H_{2}O}}}

При определённых условиях можно провести мягкое окисление органического соединения:

CH3CH2OH+O2→CH3COOH+H2O{\displaystyle {\mathsf {CH_{3}CH_{2}OH+O_{2}\rightarrow CH_{3}COOH+H_{2}O}}}

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже ).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

2Na+O2→Na2O2{\displaystyle {\mathsf {2Na+O_{2}\rightarrow Na_{2}O_{2}}}}

Некоторые оксиды поглощают кислород:

2BaO+O2→2BaO2{\displaystyle {\mathsf {2BaO+O_{2}\rightarrow 2BaO_{2}}}}

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

H2+O2→H2O2{\displaystyle {\mathsf {H_{2}+O_{2}\rightarrow H_{2}O_{2}}}}

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Na2O2+O2→2NaO2{\displaystyle {\mathsf {Na_{2}O_{2}+O_{2}\rightarrow 2NaO_{2}}}}

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

K+O2→KO2{\displaystyle {\mathsf {K+O_{2}\rightarrow KO_{2}}}}

Неорганические озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

3KOH+3O3→2KO3+KOH∗H2O+2O2↑{\displaystyle {\mathsf {3KOH+3O_{3}\rightarrow 2KO_{3}+KOH*H_{2}O+2O_{2}\uparrow }}}

В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

PtF6+O2→O2PtF6{\displaystyle {\mathsf {PtF_{6}+O_{2}\rightarrow O_{2}PtF_{6}}}}

В этой реакции, кислород проявляет восстановительные свойства.

Фториды кислорода

Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через разбавленный раствор щелочи:

2F2+2NaOH→2NaF+H2O+OF2↑{\displaystyle {\mathsf {2F_{2}+2NaOH\rightarrow 2NaF+H_{2}O+OF_{2}\uparrow }}}

Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

F2+O2→O2F2{\displaystyle {\mathsf {F_{2}+O_{2}\rightarrow O_{2}F_{2}}}}

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, O4F2, O5F2 и O6F2.

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.

Получение

Перегонка жидкого воздуха

В настоящее время в промышленности кислород получают из воздуха.
Основным промышленным способом получения кислорода является криогенная ректификация.
Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMnO4→tK2MnO4+MnO2+O2↑{\displaystyle {\ce {2KMnO4 -> K2MnO4 + MnO2 + O2 ^}}}

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца(IV):

2H2O2→MnO22H2O+O2↑{\displaystyle {\ce {2H2O2 -> 2H2O + O2 ^}}}

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3⟶2KCl+3O2↑{\displaystyle {\ce {2KClO3 -> 2KCl + 3O2 ^}}}

Разложение оксида ртути(II) (при t = 100 °C) было первым методом синтеза кислорода:

2HgO→100°C2Hg+O2↑{\displaystyle {\ce {2HgO -> 2Hg + O2 ^}}}

Электролиз водных растворов

К лабораторным способам получения кислорода относится метод электролиза разбавленных водных растворов щелочей, кислот и некоторых солей (сульфатов, нитратов щелочных металлов):

2H2O→e−2H2↑+O2↑{\displaystyle {\ce {2H2O -> 2H2 ^ + O2 ^}}}

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2+2CO2⟶2Na2CO3+O2↑{\displaystyle {\ce {2Na2O2 + 2CO2 -> 2Na2CO3 + O2 ^}}}

Для соблюдения баланса объёмов поглощённого углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Компонент ракетного топлива

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения.
Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Основная статья: Кислородная терапия

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), диоксид серы в триоксид серы, аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В сельском хозяйстве

В тепличном хозяйстве для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

[править] Литература

  • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • Ф. А. Деркач «Химия» Л. 1968
  • Малая горная энциклопедия . В 3-х т. / Под ред. В. С. Белецкого . — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3 .
  • Михаличко Б. М. Курс общей химии. Теоретические основы: Учебное пособие. — М .: Знание, 2009. — 548 с. ISBN 978-966-346-712-2
  • Кириченко В. И. Общая химия: Учебное пособие. — К .: Высшая школа, 2005. — 639 с . — (ил.) ISBN 966-642-182-8

Периодическая система химических элементов Д. И. Менделеева
                             
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh  
Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Суперактиноиды Переходные металлы Другие металлы Полуметаллы Другие неметаллы Галогены Благородные газы Свойства неизвестны

Нахождение в природе

Накопление O2 в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка. 1. (3,85—2,45 млрд лет назад) — O2 не производился2. (2,45—1,85 млрд лет назад) — O2 производился, но поглощался океаном и породами морского дна3. (1,85—0,85 млрд лет назад) — O2 выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя4. (0,85—0,54 млрд лет назад) — все горные породы на суше окислены, начинается накопление O2 в атмосфере5. (0,54 млрд лет назад — по настоящее время) — современный период, содержание O2 в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы). Первый миллиард лет практически весь кислород поглощался растворённым в океанах железом и формировал залежи джеспилита. 3—2,7 млрд лет назад кислород начал выделяться в атмосферу и 1,7 млрд лет назад достиг 10 % от нынешнего уровня.

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере[нет в источнике]. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2016 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Михаил Фирсов
Оцените автора
( Пока оценок нет )
Добавить комментарий