Основные оксиды, перечень, список, физические и химические свойства

Номенклатура

Практически все оксиды принято называть так: слово «оксид», после чего следует название химического элемента в родительном падеже. Например, Al2O3 — это оксид алюминия. На химическом языке этот окисл читается так: алюминий 2 о 3. Некоторые химические элементы, такие как медь, могут иметь несколько степеней оксиления, соответственно, оксиды тоже будут разными. Тогда оксид CuO — это оксид меди (два), то есть со степенью оксиления 2, а оксид Cu2O — это оксид меди (три), который имеет степень оксиления 3.

Но существуют и другие наименования оксидов, которые выделяют по числу в соединении атомов кислорода. Монооксидом или моноокисью называют такие оксиды, в которых содержится всего один атом кислорода. Диоксидами называют такие оксилы, в которых содержится два атома кислорода, о чем сообщается приставка «ди». Триоксидами называют такие оксиды, в которых содержится уже три атома кислорода. Такие наименования как монооксид, диоксид и триоксид, уже устарели, но часто встречаются в учебниках, книгах и других пособиях.

Существуют и так называемые тривиальные названия оксидов, то есть те, которые сложились исторически. Например, CO — это окисл или монооксид углерода, но даже химики чаще всего называют это вещество угарным газом.

Основные оксиды, перечень, список, физические и химические свойства

Итак, оксид — это соединение кислорода с химическим элементом. Основной наукой, которая изучает их образование и взаимодействия, является химия. Оксиды, их классификация и свойства — это несколько важных тем в науке химия, не поняв которую нельзя понять все остальное. Окислы — это и газы, и минералы, и порошки. Некоторые окислы стоит подробно знать не только ученым, но и обычным людям, ведь они даже могут быть опасны для жизни на этой земле. Окислы — это тема очень интересная и достаточно легкая. Соединения оксидов очень часто встречаются в повседневной жизни.

Кислотные оксиды

Или ангидриды — это такие окислы, которые в химических реакциях проявляют а также образуют кислородсодержащие кислоты. Ангидриды всегда образуются типичными неметаллами, а также некоторыми переходными химическими элементами.

Оксиды, их классификация и химические свойства — это важные понятия. Например, у кислотных оксидов химические свойства совершенно отличаются от амфотерных. Например, когда ангидрид взаимодействует с водой, образуется соответствующая кислота (исключение составляет SiO2 — Ангидриды взаимодействуют с щелочами, а в результате таких реакций выделяется вода и сода. При взаимодействии с образуется соль.

Основные оксиды, перечень, список, физические и химические свойства

Оксиды

В состав оксидов ВСЕГДА входит ТОЛЬКО два элемента, один из которых будет кислород. В этом классе соединений срабатывает правило, третий элемент лишний, он не запасной, его просто не должно быть. Второе правило, степень окисления кислорода равна -2. Из выше сказанного, определение оксидов будет звучать в следующем виде.

Основные оксиды, перечень, список, физические и химические свойства

Оксиды в природе нас окружают повсюду, честно говоря, сложно представить нашу планету без двух веществ – это вода Н2О и песок SiO2.

Вы можете задаться вопросом, а что бывают другие бинарные соединения с кислородом, которые не будут относиться к оксидам.

Поранившись, Вы обрабатываете рану перекисью водорода Н2О2. Или для примера соединение с фтором OF2. Данные вещества вписываются в определение, так как состоят из 2 элементов и присутствует кислород. Но давайте определим степени окисления элементов.

Основные оксиды, перечень, список, физические и химические свойства

Данные соединения не относятся к оксидам, так как степень окисления кислорода не равна -2.

Кислород, реагируя с простыми, а также сложными веществами образует оксиды

При составлении уравнения реакции, важно помнить, что элементу О свойственна валентность II (степень окисления -2), а также не забываем о коэффициентах. Если не помните, какую высшую валентность имеет элемент, советуем Вам воспользоваться периодической системой, где можете найти формулу высшего оксида

Основные оксиды, перечень, список, физические и химические свойства

Рассмотрим на примере следующих веществ кальций Са, мышьяк As и алюминий Al.

Основные оксиды, перечень, список, физические и химические свойства

Подобно простым веществам реагируют с кислородом сложные, только в продукте будет два оксида. Помните детский стишок, а синички взяли спички, море синее зажгли, а «зажечь» можно Чёрное море, в котором содержится большое количество сероводорода H2S. Очевидцы землетрясения, которое произошло в 1927 году, утверждают, что море горело.

Основные оксиды, перечень, список, физические и химические свойства

Чтобы дать название оксиду вспомним падежи, а именно родительный, который отвечает на вопросы: Кого? Чего? Если элемент имеет переменную валентность в скобках её необходимо указать.

Основные оксиды, перечень, список, физические и химические свойства

Классификация оксидов строится на основе степени окисления элемента, входящего в его состав.

Основные оксиды, перечень, список, физические и химические свойства

Реакции оксидов с водой определяют их характер. Но как составить уравнение реакции, а тем более определить состав веществ, строение которых Вам ещё не известно. Здесь приходит очень простое правило, необходимо учитывать, что эта реакция относиться к типу соединения, при которой степень окисления элементов не меняется.

Возьмём основный оксид, степень окисления входящего элемента +1, +2(т.е. элемент одно- или двухвалентен). Этими элементами будут металлы. Если к этим веществам прибавить воду, то образуется новый класс соединений – основания, состава Ме(ОН)n, где n равно 1, 2 или 3, что численно отвечает степени окисления металла, гидроксильная группа ОН- имеет заряд –(минус), что отвечает валентности I.При составлении уравнений не забываем о расстановке коэффициентов.

Основные оксиды, перечень, список, физические и химические свойства

Аналогично реагируют с водой и кислотные оксиды, только продуктом будет кислота, состава НхЭОу. Как и в предыдущем случае, степень окисления не меняется, тип реакции — соединение. Чтобы составить продукт реакции, ставим водород на первое место, затем элемент и кислород.

Основные оксиды, перечень, список, физические и химические свойства

Особо следует выделить оксиды неметаллов в степени окисления +1 или +2, их относят к несолеобразующим. Это означает, что они не реагируют с водой, и не образуют кислоты либо основания. К ним относят CO, N2O, NO.

Чтобы определить будет ли оксид реагировать с водой или нет, необходимо обратиться в таблицу растворимости. Если полученное вещество растворимо в воде, то реакция происходит.

Основные оксиды, перечень, список, физические и химические свойства

Основные оксиды, перечень, список, физические и химические свойства

Золотую середину занимают амфотерные оксиды. Им могут соответствовать как основания, так и кислоты, но с водой они не реагируют. Они образованные металлами в степени окисления +2 или +3, иногда +4. Формулы этих веществ необходимо запомнить.

Основные оксиды, перечень, список, физические и химические свойства

Соли

С представителями веществ этого класса вы встречаетесь ежедневно на кухне, в быту, на улице, в школе, сельском хозяйстве.

Основные оксиды, перечень, список, физические и химические свойства

Объединяет все эти вещества, что они содержат атомы металла и кислотный остаток. Исходя из этого, дадим определение этому классу.

Основные оксиды, перечень, список, физические и химические свойства

Средние соли – это продукт полного обмена между веществами, в которых содержатся атомы металла и кислотный остаток (КО) (мы помним, что это часть чего-то, которая не имеет возможности существовать отдельно).

Выше было рассмотрено 3 класса соединений, давайте попробуем подобрать комбинации, чтобы получить соли, типом реакции обмена.

Основные оксиды, перечень, список, физические и химические свойства

Чтобы составить название солей, необходимо указать название кислотного остатка, и в родительном падеже добавить название металла.

Ca(NO3)2– нитрат (чего) кальция, CuSO4– сульфат (чего) меди (II).

Наверняка многие из вас что-то коллекционировали, машинки, куклы, фантики, чтобы получить недостающую модель, вы менялись с кем-то своей. Применим этот принцип и для получения солей. К примеру, чтобы получить сульфат натрия необходимо 2 моль щёлочи и 1 моль кислоты. Допустим, что в наличии имеется только 1 моль NaOH, как будет происходить реакция? На место одного атома водорода станет натрий, а второму Н не хватило Na. Т.е в результате не полного обмена между кислотой и основанием получаются кислые соли. Название их не отличается от средних, только необходимо прибавить приставку гидро.

Основные оксиды, перечень, список, физические и химические свойства

Однако бывают случаи, с точностью наоборот, не достаточно атомов водорода, чтобы связать ОН-группы. Результатом этой недостачи являются основные соли. Допустим реакция происходит между Ва(ОН)2 и HCl. Чтобы связать две гидроксильные группы, требуется два водорода, но предположим, что они в недостаче, а именно в количестве 1. Реакция пойдёт по схеме.

Основные оксиды, перечень, список, физические и химические свойства

Особый интерес и некоторые затруднения вызывают комплексные соли, своим внешним, казалось,громоздким и непонятным видом, а именно квадратными скобками:K3[Fe(CN)6] или [Ag(NH3)2]Cl. Но не страшен волк, как его рисуют, гласит поговорка. Соли состоят из катионов (+) и анионов (-). Аналогично и с комплексными солями.

Основные оксиды, перечень, список, физические и химические свойства

Образует комплексный ион элемент-комплексообразователь, обычно это атом металла, которого, как свита, окружают лиганды.

Основные оксиды, перечень, список, физические и химические свойства

Теперь необходимо справиться с задачей дать название этому типу солей.

Основные оксиды, перечень, список, физические и химические свойства

Попробуем дать название K3[Fe(CN)6]. Существует главный принцип, чтение происходит справа налево. Смотрим, количество лигандов, а их роль выполняют циано-группы CN−, равно 6 – приставка гекса. В комплексообразователем будут ионы железа. Значит, вещество будет иметь название гексацианоферрат(III) (чего) калия.

Основные оксиды, перечень, список, физические и химические свойства

Образование комплексных солей происходит путём взаимодействия, к примеру, амфотерных оснований с растворами щелочей. Амфотерность проявляется способностью оснований реагировать как с кислотами, так и щелочами. Так возьмём гидроксид алюминия или цинка и подействуем на них кислотой и щёлочью.

Основные оксиды, перечень, список, физические и химические свойства

В природе встречаются соли, где на один кислотный остаток приходится два разных металла. Примером таких соединений служат алюминиевые квасцы, формула которых имеет вид KAl(SO4)2. Это пример двойных солей.

Основные оксиды, перечень, список, физические и химические свойства

Из всего вышесказанного можно составить обобщающую схему, в которой указаны все классы неорганических соединений.

Основные оксиды, перечень, список, физические и химические свойства

Классификация оксидов

Оксиды и их классификация зависят от того, как они образовались. По своей классификации окислы делятся всего на две группы, первая из которых солеобразующие, а вторая несолеобразующие. Итак, рассмотрим подробнее обе группы.

Солеобразующие оксиды — это довольно большая группа, которая делится на амфотерные, кислотные и основные оксиды. В результате любой химической реакции солеобразующие оксиды образуют соли. Как правило, в состав оксидов солеобразующих входят элементы металлов и неметаллов, которые в результате химической реакции с водой образуют кислоты, но при взаимодействии с основаниями образуют соответствующие кислоты и соли.

Несолеобразующие окислы — это такие окислы, которые в результате химической реакции не образуют соли. Примерами таких окислов могут служить и углерода.

Кислоты

Если в состав оксидов обязательно входит кислород, то следующий класс узнаваем будет по наличию атомов водорода, которые будут стоять на первом месте, а за ними следовать, словно нитка за иголкой, кислотные остатки.

Основные оксиды, перечень, список, физические и химические свойства

В природе существует большое количество неорганических кислот. Но в школьном курсе химии рассматривается только их часть. В таблице 1 приведены названия кислот.

Основные оксиды, перечень, список, физические и химические свойства

Валентность кислотного остатка определяется количеством атомов водорода. В зависимости от числа атомов Н выделяют одно- и многоосновные кислоты.

Основные оксиды, перечень, список, физические и химические свойства

Если в состав кислоты входит кислород, то они называются кислородсодержащими, к ним относится серная кислота, угольная и другие. Получают их путём взаимодействия воды с кислотными оксидами. Бескислородные кислоты образуются при взаимодействии неметаллов с водородом.

Основные оксиды, перечень, список, физические и химические свойства

Только одну кислоту невозможно получить подобным способом – это кремниевую. Отвечающий ей оксид SiO2 не растворим в воде, хотя честно говоря, мы не представляем нашу планету без песка.

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом:

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например, алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O2 → 2Al2O3

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

2Na + O2 → 2Na2O2

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:

K + O2  →  KO2

Примечания: металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

4Fe + 3O2 → 2Fe2O3

4Cr + 3O2 → 2Cr2O3

Железо также горит с образованием железной окалины — оксида железа (II, III):

3Fe + 2O2 → Fe3O4

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например, фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

4P + 5O2(изб.) → 2P2O5

4P + 3O2(нед.) → 2P2O3

Но есть некоторые исключения.

Например, сера сгорает только до оксида серы (IV):

S + O2 → SO2

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O= 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000оС), либо под действием электрического разряда, и только до оксида азота (II):

N2 + O2 = 2NO

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например, при сжигании пирита FeS2 образуются  оксид железа (III) и оксид серы (IV):

4FeS2 + 11O2 → 2Fe2O3 + 8SO2

Сероводород горит с образованием оксида серы (IV)  при избытке кислорода и с образованием серы при недостатке кислорода:

2H2S + 3O2(изб.) → 2H2O + 2SO2

2H2S + O2(нед.) → 2H2O + 2S

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

4NH3 + 3O2 →2N2 + 6H2O

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

4NH3 + 5O2 → 4NO + 6H2O

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

H2CO3 → H2O + CO2

H2SO3 → H2O + SO2

NH4OH → NH3 + H2O

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

H2SiO3 → H2O + SiO2

2Fe(OH)3 → Fe2O3 + 3H2O

4. Еще один способ получения оксидов — разложение сложных соединений — солей.

Например, нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Li2CO3 → CO2 + Li2O

CaCO3 →  CaO + CO2

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

2Zn(NO3)2 → 2ZnO + 4NO2 + O2

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Михаил Фирсов
Оцените автора
( Пока оценок нет )
Добавить комментарий