Когерентность — это… когерентность световых волн. временная когерентность

Время когерентности

В реальной ситуации разнородные пакеты когерентны лишь на отдельном интервале. А далее расхождение фаз становится слишком большим, чтобы применять описанное выше уравнение. Чтобы вывести условия возможности вычислений, вводится понятие времени когерентности.

Полагается, что в начальный момент фазы всех пакетов одинаковы. Выбранные элементарные доли волны когерентны. Тогда искомое время находится как отношение числа Пи к ширине спектра пакета. Если время превысило когерентное, в данном участке уже нельзя использовать формулу суперпозиции для сложения колебаний – фазы слишком сильно отличаются друг от друга. Волна уже не когерентна.

Пакет возможно рассматривать, словно он характеризуется случайной фазой. В этом случае взаимодействие волн идёт по отличающейся схеме. Тогда находятся фурье-компоненты по указанной формуле для дальнейших расчётов. Причём взятые для расчёта две прочие компоненты берутся из трёх пакетов. Это случай совпадения с теорией, упомянутый выше. Следовательно, уравнение показывает зависимость всех пакетов. Точнее – результата сложения.

Для получения наилучшего результата нужно, чтобы ширина спектра пакета не превышала числа Пи, делённого на время решения задачи суперпозиции когерентных волн. При расстройке частоты амплитуды гармоник начинают осциллировать, точный результат получить сложно. И наоборот, для двух когерентных колебаний формула сложения упрощается максимально. Амплитуда находится как квадратный корень из суммы исходных гармоник, возведённых в квадрат и сложенных с собственным удвоенным произведением, помноженным на косинус разности фаз. У когерентных величин угол равен нулю, результат, как уже указано выше, получается максимальным.

Наравне с временем и длиной когерентности используют термин «длина цуга», что является аналогом второго термина. Для солнечного света эта дистанция составляет один микрон. Спектр нашего светила крайне широкий, что объясняет настолько мизерную дистанцию, где излучение считается когерентным самому себе. Для сравнения, длина цуга газового разряда достигает 10 см (в 100000 раз больше), а у лазера излучение сохраняет свойства и на километровых расстояниях.

С радиоволнами намного проще. Кварцевые резонаторы позволяют достичь высокой когерентности волны, чем объясняются пятна уверенного приёма на местности, граничащие с зонами молчания. Аналогичное проявляется при изменении имеющейся картины с течением суток, движением облаков и прочими факторами. Изменяются условия распространения когерентной волны, и интерференционная суперпозиция оказывает влияние в полной мере. В радиодиапазоне на низких частотах длина когерентности может превышать поперечник Солнечной системы.

Условия сложения сильно зависят от формы фронта. Наиболее просто задача решается для плоской волны. В действительности фронт обычно является сферическим. Точки синфазности находятся на поверхности шара. В бесконечно удалённой от источника местности условие плоскости возможно принять за аксиому, и дальнейший расчёт вести согласно взятому постулату. Чем ниже частота, тем проще создать условия для выполнения расчёта. И наоборот, источники света со сферическим фронтом (вспомним Солнце) сложно подогнать под стройную теорию, написанную в учебниках.

Когерентность и время

Временная когерентность – это мера корреляции между фазами световой волны в различных точках вдоль направления распространения.

Предположим, источник излучает волны длиной λ и λ ± Δλ, которые в какой-то момент в пространстве будут интерферировать на расстоянии lc = λ2 / (2πΔλ). Здесь lc – длина когерентности.

Фаза волны, распространяющейся в направлении х, задается как ф = kx — ωt. Если рассмотреть рисунок волн в пространстве в момент времени t на расстоянии lc, разность фаз между двумя волнами с векторами k1 и k2, которые находятся в фазе при х = 0, равна Δφ = lc(k1 — k2). Когда Δφ = 1, или Δφ ~ 60°, свет больше не является когерентным. Интерференция и дифракция оказывают значительное влияние на контраст.

Таким образом:

  • 1 = lc(k1 — k2) = lc(2π / λ — 2π / (λ + Δλ));
  • lc(λ + Δλ — λ) / (λ (λ + Δλ)) ~ lcΔλ / λ2 = 1/2π;
  • lc = λ2 / (2πΔλ).

Волна проходит через пространство со скоростью с.

Время когерентности tc = lc / с. Так как λf = с, то Δf / f = Δω / ω = Δλ / λ. Мы можем написать

  • lc = λ2 / (2πΔλ) = λf / (2πΔf) = с / Δω;
  • tc = 1 / Δω.

Если известна длина волны или частота распространения источника света, можно вычислить lc и tc. Невозможно наблюдать интерференционную картину, полученную путем деления амплитуды, такую как тонкопленочная интерференция, если оптическая разность хода значительно превышает lc.

Временная когерентность говорит о монохромности источника.

Когерентность - это... когерентность световых волн. временная когерентность

Ряды Фурье

Синусоидальная плоская волна абсолютно когерентна в пространстве и времени, а ее длина, время и площадь когерентности бесконечны. Все реальные волны являются волновыми импульсами, длящимися в течение конечного интервала времени и имеющими конечный перпендикуляр к их направлению распространения. Математически они описываются непериодическими функциями. Для нахождения частот, присутствующих в волновых импульсах для определения Δω и длины когерентности необходимо провести анализ непериодических функций.

Согласно анализу Фурье, произвольную периодическую волну можно рассматривать как суперпозицию синусоидальных волн. Синтез Фурье означает, что наложение множества синусоидальных волн позволяет получить произвольную периодическую форму волны.

Условие максимума и минимума.

Однако величина , называемая разностью хода
, имеет важнейшее значение. От неё самым решительным образом зависит то, какой результат сложения приходящих волн мы увидим в точке .

В ситуации на рис. 3
разность хода равна длине волны . Действительно, на отрезке укладываются три полных волны, а на отрезке — четыре (это, конечно, лишь иллюстрация; в оптике, например, длина таких отрезков составляет порядка миллиона длин волн). Легко видеть, что волны в точке складываются в фазе и создают колебания удвоенной амплитуды — наблюдается, как говорят, интерференционный максимум
.

Ясно, что аналогичная ситуация возникнет при разности хода, равной не только длине волны, но и любому целому числу длин волн.

Условие максимума

. При наложении когерентных волн колебания в данной точке будут иметь максимальную амплитуду, если разность хода равна целому числу длин волн:

(1)

Теперь посмотрим на рис. 4
. На отрезке укладываются две с половиной волны, а на отрезке -три волны. Разность хода составляет половину длины волны (d=\lambda /2
).

Теперь нетрудно видеть, что волны в точке складываются в противофазе и гасят друг друга — наблюдается интерференционный минимум
. То же самое будет, если разность хода окажется равна половине длины волны плюс любое целое число длин волн.

Условие минимума

.
Когерентные волны, складываясь, гасят друг друга, если разность хода равна полуцелому числу длин волн:

(2)

Равенство (2)
можно переписать следующим образом:

Поэтому условие минимума формулируют ещё так: разность хода должна быть равна нечётному числу длин полуволн.

Понятие когерентности

Советская энциклопедия говорит, что волны одинаковой частоты неизменно когерентны. Это верно исключительно для отдельно взятых неподвижных точек пространства. Фаза определяет результат сложения колебаний. К примеру, противофазные волны одной амплитуды дают прямую линию. Такие колебания гасят друг друга. Самая большая амплитуда у синфазных волн (разность фаз равна нулю). На этом факте основан принцип действия лазеров, зеркальная и фокусирующая система пучков света, особенности получения излучения делают возможной передачу информации на колоссальные расстояния.

Согласно теории взаимодействия колебаний когерентные волны образуют интерференционную картину. У новичка возникает вопрос: свет лампочки не кажется полосатым. По простой причине, что излучение не одной частоты, а лежит в пределах отрезка спектра. И участок, причём, приличной ширины. Из-за неоднородности частот волны беспорядочные, не проявляют свои теоретически и экспериментально в лабораториях обоснованные и доказанные свойства.

Хорошей когерентностью обладает луч лазера. Его используют для связи на дальние расстояния при прямой видимости и прочих целей. Когерентные волны дальше распространяются в пространстве и на приёмнике подкрепляют друг друга. В пучке света разрозненной частоты эффекты способны вычитаться. Возможно подобрать условия, что излучение исходит от источника, но на приёмнике не зарегистрируется.

Обычный свет лампочки тоже работает не на полную мощность. Достичь КПД в 100% на современном этапе развития техники не представляется возможным. К примеру, газоразрядные лампы страдают сильной дисперсией частот. Что касается светодиодов, основатели концепции нанотехнологий обещали создать элементную базу для производства полупроводниковых лазеров, но напрасно. Значительная часть разработок засекречена и рядовому обывателю недоступна.

Лишь когерентные волны проявляют волновые качества. Действуют согласованно, как лучинки веника: по одной легко сломать, вместе взятые – выметают мусор. Волновые свойства – дифракция, интерференция и рефракция – характерны для всех колебаний. Просто зарегистрировать эффект сложнее из-за беспорядочности процесса.

Два типа когерентности

Давайте рассмотрим простой пример. Представьте себе два поплавка, поднимающиеся и опускающиеся на поверхности воды. Предположим, что источником волн является единственная палка, которую гармонически погружают и вынимают из воды, нарушая спокойную гладь водной поверхности. При этом существует идеальная корреляция между движениями двух поплавков. Они могут не подниматься и опускаться точно по фазе, когда один идет вверх, а второй вниз, но разность фаз между позициями двух поплавков постоянна во времени. Гармонически колеблющийся точечный источник производит абсолютно когерентную волну.

Когда описывают когерентность световых волн, различают два ее типа – временную и пространственную.

Когерентность относится к способности света производить интерференционную картину. Если две световые волны сведены вместе, и они не создают областей повышенной и уменьшенной яркости, они называются некогерентными. Если они производят «идеальную» интерференционную картину (в смысле существования областей полной деструктивной интерференции), то они являются полностью когерентными. Если две волны создают «менее совершенную» картину, то считается, что они частично когерентны.

Когерентность - это... когерентность световых волн. временная когерентность

Длина и время когерентности

Что наблюдается на экране? При d = 0 видно множество очень четких интерференционных полос. Когда d увеличивается, полосы становится менее выраженными: темные участки становятся ярче, а светлые — тусклее. Наконец, при очень больших d, превышающих некоторое критическое значение D, светлые и темные кольца исчезают полностью, оставляя лишь размытое пятно.

Очевидно, что световое поле не может интерферировать с задержанной во времени версией самого себя, если временная задержка достаточно велика. Расстояние 2D — это длина когерентности: интерференционные эффекты заметны, только когда разница в пути меньше этого расстояния. Данную величину можно преобразовать во время t c делением ее на с: t c = 2D / с.

Эксперимент Майкельсона измеряет временную когерентность световой волны: ее способность интерферировать с задержанной версией самой себя. У хорошо стабилизированного лазера t c =10 -4 с, l c = 30 км; у фильтрованного теплового света t c =10 -8 с, l c = 3 м.

Понятие когерентности

Советская энциклопедия говорит, что волны одной частоты всегда когерентны. Это верно, но только для отдельно взятых неподвижных точек пространства. Фаза определяет результат сложения колебаний. Так например, противофазные волны одной амплитуды дают прямую линию. Такие колебания гасят друг друга. Самая большая амплитуда будет у синфазных волн (разность фаз равна нулю). На этом факте основан принцип действия лазеров, зеркальная и фокусирующая системы которых, а также особенности получения излучения делают возможной передачу информации на колоссальные расстояния.

Согласно теории взаимодействия колебаний когерентные волны образуют интерференционную картину. И у новичка возникает вопрос: свет лампочки не кажется вовсе полосатым – почему? По той причине, что излучение не одной частоты, а лежит в пределах некоторого отрезка спектра. И участок этот приличной ширины. Из-за неоднородности частот волны беспорядочные. Вот поэтому и не проявляются их теоретически и экспериментально в лабораториях обоснованные и доказанные свойства.

Хорошей когерентностью обладает луч лазера. Поэтому его и используют для связи на дальние расстояния при прямой видимости и некоторых других целей. Когерентные волны дальше распространяются в пространстве и на приёмнике подкрепляют друг друга. Тогда как в пучке света разрозненной частоты эффекты могут вычитаться. Можно даже так подобрать условия, что излучение будет исходить от источника, но на приёмнике ничего не зарегистрируется.

А что же обычный свет лампочки, тоже работает не на полную мощность? Именно так. Поэтому достичь КПД в 100% на современном этапе развития техники не представляется возможным. К примеру, газоразрядные лампы сами по себе страдают сильной дисперсией частот. Что касается светодиодов, то основатели концепции нанотехнологий обещали создать элементную базу для производства полупроводниковых лазеров, но воз и ныне там. Значительная часть разработок вовсе засекречена и рядовому обывателю недоступна.

Итак, лишь когерентные волны проявляют явно свои волновые качества. Проще говоря, они действуют согласованно, как лучинки веника. Которые по одной можно было сломать, но вместе взятые они легко выметают мусор. Тогда как волновые свойства, а именно – дифракция, интерференция и рефракция – характерны для всех колебаний. Просто зарегистрировать эффект сложнее из-за беспорядочности процесса.

Связь со статистикой

Теорию когерентности можно рассматривать как связь физики с другими науками, так как она является результатом слияния электромагнитной теории и статистики, так же как статистическая механика является объединением механики со статистикой. Теория используется для количественного определения и характеристики влияний случайных флуктуаций на поведение световых полей.

Обычно невозможно измерить флуктуации волнового поля непосредственно. Индивидуальные «подъемы и падения» видимого света нельзя обнаружить непосредственно или даже имея сложные приборы: его частота составляет порядка 10 15 колебаний в секунду. Можно измерить только усредненные показатели.

Условие когерентности

Световые волны, излучаемые двумя краями источника, в некоторый момент времени t обладают определенной разностью фаз прямо в центре между двумя точками. Луч, идущий от левого края δ до точки P2 должен пройти на d(sinθ)/2 дальше, чем луч, направляющийся к центру. Траектория луча, идущего от правого края δ до точки P2, проходит путь на d(sinθ)/2 меньше. Разность пройденного пути для двух лучей равна d·sinθ и представляет разность фаз Δф» = 2πd·sinθ / λ. Для расстояния от P1 до P2 вдоль фронта волны мы получаем Δφ = 2Δφ»= 4πd·sinθ / λ. Волны, испускаемые двумя краями источника, находятся в фазе с P1 в момент времени t и не совпадают по фазе на расстоянии 4πdsinθ/λ в Р2. Так как sinθ ~ δ / (2L), то Δφ = 2πdδ / (Lλ). Когда Δφ = 1 или Δφ ~ 60°, свет больше не считается когерентным.

Δφ = 1 -> d = Lλ / (2πδ) = 0,16 Lλ / δ.

Пространственная когерентность говорит об однородности фазы волнового фронта.

Лампа накаливания является примером некогерентного источника света.

Когерентный свет можно получить от источника некогерентного излучения, если отбросить большую часть излучения. В первую очередь производится пространственная фильтрация для повышения пространственной когерентности, а затем спектральная фильтрация для увеличения временной когерентности.

Интерферометр Майкельсона

Когерентность — это явление, которое лучше всего объяснить с помощью эксперимента.

В интерферометре Майкельсона свет от источника S (который может быть любым: солнцем, лазером или звездами) направлен на полупрозрачное зеркало M 0 , которое отражает 50 % света в направлении зеркала M 1 и пропускает 50 % в направлении зеркала M 2 . Луч отражается от каждого из зеркал, возвращается к M 0 , и равные части света, отраженные от М 1 и М 2, объединяются и проецируются на экран B. Прибор можно настроить путем изменения расстояния от зеркала M 1 до светоделителя.

Интерферометр Майкельсона, по существу, смешивает луч с задержанной во времени его собственной версией. Свет, который проходит по пути к зеркалу M 1 должен пройти расстояние на 2d больше, чем луч, который движется к зеркалу M 2 .

Ряды Фурье

Синусоидальная плоская волна абсолютно когерентна в пространстве и времени, а ее длина, время и площадь когерентности бесконечны. Все реальные волны являются волновыми импульсами, длящимися в течение конечного интервала времени и имеющими конечный перпендикуляр к их направлению распространения. Математически они описываются непериодическими функциями. Для нахождения частот, присутствующих в волновых импульсах для определения Δω и длины когерентности необходимо провести анализ непериодических функций.

Согласно анализу Фурье, произвольную периодическую волну можно рассматривать как суперпозицию синусоидальных волн. Синтез Фурье означает, что наложение множества синусоидальных волн позволяет получить произвольную периодическую форму волны.

Когерентность - это... когерентность световых волн. временная когерентность

Длина и время когерентности

Что наблюдается на экране? При d = 0 видно множество очень четких интерференционных полос. Когда d увеличивается, полосы становится менее выраженными: темные участки становятся ярче, а светлые – тусклее. Наконец, при очень больших d, превышающих некоторое критическое значение D, светлые и темные кольца исчезают полностью, оставляя лишь размытое пятно.

Очевидно, что световое поле не может интерферировать с задержанной во времени версией самого себя, если временная задержка достаточно велика. Расстояние 2D – это длина когерентности: интерференционные эффекты заметны, только когда разница в пути меньше этого расстояния. Данную величину можно преобразовать во время tc делением ее на скорость света с: tc = 2D / с.

Эксперимент Майкельсона измеряет временную когерентность световой волны: ее способность интерферировать с задержанной версией самой себя. У хорошо стабилизированного лазера tc=10-4 с, lc= 30 км; у фильтрованного теплового света tc=10-8 с, lc= 3 м.

Когерентность - это... когерентность световых волн. временная когерентность

Когерентные источники.

Пусть имеются два точечных источника, создающие волны в окружающем пространстве. Мы полагаем, что эти источники согласованы друг с другом в следующем смысле.

Когерентность
.
Два источника называются когерентными, если они имеют одинаковую частоту и постоянную, не зависящую от времени разность фаз. Волны, возбуждаемые такими источниками, также называются когерентными.

Итак, рассматриваем два когерентных источника и . Для простоты считаем, что источники излучают волны одинаковой амплитуды, а разность фаз между источниками равна нулю. В общем, эти источники являются «точными копиями» друг друга (в оптике, например, источник служит изображением источника в какой-либо оптической системе).

Наложение волн, излучённых данными источниками, наблюдается в некоторой точке . Вообще говоря, амплитуды этих волн в точке не будут равны друг другу — ведь, как мы помним, амплитуда сферической волны обратно пропорциональна расстоянию до источника, и при разных расстояниях и амплитуды пришедших волн окажутся различными. Но во многих случаях точка расположена достаточно далеко от источников — на расстоянии гораздо большем, чем расстояние между самими источниками
. В такой ситуации различие в расстояниях и не приводит к существенному отличию в амплитудах приходящих волн. Следовательно, мы можем считать, что амплитуды волн в точке также совпадают.

Интерференция волн. Принцип суперпозиции для волн. Когерентные волны.

Волновые свойства
света наиболее отчетливо обнаруживают
себя в интерференции и дифракции. Эти
явления характерны для волн любой
природы и сравнительно просто наблюдаются
на опыте для волн на поверхности воды
или для звуковых волн. Наблюдать же
интерференцию и дифракцию световых
волн можно лишь при определенных
условиях. Свет, испускаемый обычными
(нелазерными) источниками, не бывает
строго монохроматическим. Поэтому для
наблюдения интерференции свет от одного
источника нужно разделить на два пучка
и затем наложить их друг на друга.
Существующие экспериментальные методы
получения когерентных пучков из одного
светового пучка можно разделить на два
класса.

В методе деления
волнового фронта


пучок пропускается, например, через два
близко расположенных отверстия в
непрозрачном экране. Такой метод пригоден
лишь при достаточно малых размерах
источника.

В другом методе
пучок делится на одной или нескольких
частично отражающих, частично пропускающих
поверхностях. Этот метод
деления амплитуды


может применяться и при протяженных
источниках.

Если частоты волн
одинаковые, то зависимость от времени
будет определяться только разностью
начальных фаз колебаний
и,
каждая из которых в волнах от независимых
источников случайным (хаотичным) образом
меняется во времени. Если удастся каким
либо образом согласовать колебания
так, чтобы эта разность не зависела от
времени, или медленно менялась во
времени, то интенсивность результирующей
волны уже не будет равна сумме
интенсивностей падающих волн и можно
записать:

Такие «согласованные»
по фазе волны называют когерентными.

Таким образом, две
волны будут когерентными, если слагаемое
,
описывающее перераспределение
интенсивности в пространстве, не
обращается в нуль.

Когерентными
являются, например, одинаково поляризованные
волны, если их частоты одинаковы, а
разность начальных фаз не зависит от
времени. Так как начальная фаза каждого
цуга волн – случайная функция времени,
то для получения когерентных колебаний
необходимо как-то разделить одну световую
волну от источника на две, и тогда
разность начальных фаз будет равна
нулю. Знак усреднения можно снять и
записать

,

где.
Величинуможно рассматривать как разность
расстояний, пройденных волнами от
источника до места встречи. Эту разность,
умноженную на показатель преломлениясреды, называют оптической разностью
хода,
а-
разностью их фаз в момент встречи. Таким
образом, в зависимости от разности фаз
или, что тоже самое, в зависимости от
разности хода интенсивность в различных
точках пространства может изменяться
от минимального значения

,

соответствующего
до максимального значения

,

соответствующего
.
Здесь целое число.

Явление, при
котором в некоторых точках пространства
интенсивность света уменьшается, а в
некоторых увеличивается, то есть
происходит перераспределение интенсивности
в результате сложения волн, называется
интерференцией
.
В области совместного существования
двух когерентных волн можно наблюдать
интерференционную картину в виде светлых
и менее светлых (иногда — темных) полос.
Величина
,
определяемая соотношением

называется
контрастностью полос.

Когерентные волны – это колебания, разность фаз которых постоянна. Разумеется, условие может выполняться не в каждой точке пространства, а лишь на некоторых участках. Очевидно, что для удовлетворения определению, частоты колебаний также должны быть равными. Прочие волны могут быть когерентны только лишь на некотором участке пространства, а дальше разность фаз меняется, и это определение использовать уже нельзя.

Зачем это нужно

Когерентные волны являются упрощением, реально не встречающимся на практике. Как бы то ни было, эта математическая абстракция помогает во многих отраслях науки, таких как, космос, термоядерные и астрофизические исследования, акустика, музыка, электроника и, конечно же, оптика.

Для реальных приложений применяются упрощённые методы, одним из которых является трёхволновая система, основы применимости которой вкратце изложены ниже. Для анализа взаимодействия можно задать, к примеру, гидродинамическую или кинетическую модель.

Решение уравнений для когерентных волн позволяет также предсказать устойчивость систем, функционирующих с использованием плазмы. Теоретический подсчёт показывает, что в некоторых случаях амплитуда результата за короткий период растёт до бесконечности. Что означает создание взрывоопасной ситуации. Решая уравнения для когерентных волн, можно подбором условий избежать неприятных последствий.

Когерентность и время

Временная когерентность — это мера корреляции между фазами световой волны в различных точках вдоль направления распространения.

Предположим, источник излучает волны длиной λ и λ ± Δλ, которые в какой-то момент в пространстве будут интерферировать на расстоянии l c = λ 2 / (2πΔλ). Здесь l c — длина когерентности.

Фаза волны, распространяющейся в направлении х, задается как ф = kx — ωt. Если рассмотреть рисунок волн в пространстве в момент времени t на расстоянии l c , разность фаз между двумя волнами с векторами k 1 и k 2 , которые находятся в фазе при х = 0, равна Δφ = l c (k 1 — k 2). Когда Δφ = 1, или Δφ ~ 60°, свет больше не является когерентным. Интерференция и дифракция оказывают значительное влияние на контраст.

Таким образом:

  • 1 = l c (k 1 — k 2) = l c (2π / λ — 2π / (λ + Δλ));
  • l c (λ + Δλ — λ) / (λ (λ + Δλ)) ~ l c Δλ / λ 2 = 1/2π;
  • l c = λ 2 / (2πΔλ).

Волна проходит через пространство со скоростью с.

Время когерентности t c = l c / с. Так как λf = с, то Δf / f = Δω / ω = Δλ / λ. Мы можем написать

  • l c = λ 2 / (2πΔλ) = λf / (2πΔf) = с / Δω;
  • t c = 1 / Δω.

Если известна или частота распространения источника света, можно вычислить l c и t c . Невозможно наблюдать интерференционную картину, полученную путем деления амплитуды, такую как тонкопленочная интерференция, если оптическая разность хода значительно превышает l c .

Временная когерентность говорит о монохромности источника.

Михаил Фирсов
Оцените автора
( Пока оценок нет )
Добавить комментарий