Колебательный контур

Электрический конденсатор

Ёмкость колебательного контура определяется ёмкостью электрического конденсатора. О его внешнем виде было написано выше. Теперь разберём физику процессов, которые протекают в нём.

Так как обкладки конденсатора сделаны из проводника, то по ним может течь электрический ток. Однако между двумя пластинами есть препятствие: диэлектрик (им может быть воздух, дерево или другой материал с высоким сопротивлением. Благодаря тому что заряд не может перейти от одного конца провода к другому, происходит накопление его на обкладках конденсатора. Тем самым возрастает мощность магнитного и электрического полей вокруг него. Таким образом, при прекращении поступления заряда вся электроэнергия, скопившаяся на обкладках, начинает передаваться в цепь.

Каждый конденсатор имеет номинальное напряжение, оптимальное для его работы. Если долго эксплуатировать этот элемент при напряжении выше номинального, срок его службы значительно сокращается. Конденсатор колебательного контура постоянно подвержен влиянию токов, и поэтому при его выборе следует быть предельно внимательным.

Кроме обычных конденсаторов, о которых шла речь, есть также ионисторы. Это более сложный элемент: его можно описать как нечто среднее между аккумулятором и конденсатором. Как правило, диэлектриком в ионисторе служат органические вещества, между которыми находится электролит. Вместе они создают двойной электрический слой, который и позволяет накапливать в этой конструкции в разы больше энергии, чем в традиционном конденсаторе.

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения U{\displaystyle U_{0}}. Энергия, запасённая в конденсаторе, составляет

EC=CU22.{\displaystyle E_{C}={\frac {CU_{0}^{2}}{2}}.}

Параллельный колебательный контур

Осциллограмма LC-контура во время замыкания заряженного конденсатора на катушку индуктивности.С — 240 нФ (заряженный)L — 360 нГнF ≈ 542 кГц

При соединении конденсатора с катушкой индуктивности в цепи потечёт ток I{\displaystyle I}, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC={\displaystyle E_{C}=0}. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

EL=LI22,{\displaystyle E_{L}={\frac {LI_{0}^{2}}{2}},}

где L{\displaystyle L} — индуктивность катушки, I{\displaystyle I_{0}} — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть зарядка конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор в этом случае снова будет заряжен до напряжения −U{\displaystyle -U_{0}}.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

Описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи больше тока, проходящего через весь контур, причём эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения U{\displaystyle U_{0}}. Энергия, запасённая в конденсаторе, составляет

EC=CU22.{\displaystyle E_{C}={\frac {CU_{0}^{2}}{2}}.}

Параллельный колебательный контур

Осциллограмма LC-контура во время замыкания заряженного конденсатора на катушку индуктивности.С — 240 нФ (заряженный)L — 360 нГнF ≈ 542 кГц

При соединении конденсатора с катушкой индуктивности в цепи потечёт ток I{\displaystyle I}, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC={\displaystyle E_{C}=0}. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

EL=LI22,{\displaystyle E_{L}={\frac {LI_{0}^{2}}{2}},}

где L{\displaystyle L} — индуктивность катушки, I{\displaystyle I_{0}} — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть зарядка конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор в этом случае снова будет заряжен до напряжения −U{\displaystyle -U_{0}}.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

Описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи больше тока, проходящего через весь контур, причём эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:

и конденсатор в 1000 пФ

Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора  падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор – это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим ;-). Давайте сначала посчитаем  резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:

Размах амплитуды 4 Вольта

Хотя на генераторе частоты  размах  более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.

Теперь небольшой прикол 😉

Вот этот сигнал мы подаем на наш последовательный колебательный контур:

Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:

Смотрим напряжение на конденсаторе:

Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!

Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:

Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14,  и цепляю поочередно к ним лампочку:

Как видите – полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока – увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!

Объяснение резонанса напряжения

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.

Что такое ёмкость конденсатора?

Ёмкость конденсатора представляет собой отношение заряда конденсатора к напряжению, под которым он находится. Посчитать эту величину можно очень просто с помощью математической формулы:

C = (e0*S)/d, гдеe0 — диэлектрическая проницаемость материала диэлектрика (табличная величина), S — площадь обкладок конденсатора, d — расстояние между пластинами.

Зависимость ёмкости конденсатора от расстояния между обкладками объясняется явлением электростатической индукции: чем меньше расстояние между пластинами, тем сильнее они влияют друг на друга (по закону Кулона), тем больше заряд обкладок и меньше напряжение. А при уменьшении напряжения увеличивается значение ёмкости, так как её также можно описать следующей формулой:

C = q/U, гдеq — заряд в кулонах.

Стоит поговорить о единицах измерения этой величины. Ёмкость измеряется в фарадах. 1 фарад — достаточно большая величина, поэтому существующие конденсаторы (но не ионисторы) имеют ёмкость, измеряемую в пикофарадах (одна триллионная фарада).

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Последовательный колебательный контур

Если соединить последовательно электрический конденсатор и катушку индуктивности, то для синусоидального сигнала определенной частоты указанная схема будет демонстрировать нулевое реактивное сопротивление. Этот эффект называется резонансом колебательного контура, сама схема из конденсатора и индуктивности — последовательным колебательным контуром, а частота, на которой проявляется этот эффект — частотой резонанса.

Хотя и катушка индуктивности, и конденсатор имеют некоторое реактивное сопротивление, вместе они реактивного сопротивления не проявляют. Причина проста. Конденсатор и катушка накапливают и отдают энергию, но делают это по-разному. В тот момент, когда катушка накапливает энергию, конденсатор ее отдает, и наоборот. Конечно, этот эффект проявляется только для синусоидального сигнала, на определенной частоте, в установившемся режиме. Если частота сильно отличается от резонансной, то схема теряет свои чудесные качества и проявляет себя, как катушка и конденсатор. Если последовательный колебательный контур не был запитан, а теперь на него подали синусоидальный сигнал резонансной частоты, то сопротивление будет уменьшаться постепенно, по мере перехода контура в стационарный режим работы.

Если пропускать через последовательный колебательный контур синусоидальный электрический ток резонансной частоты, то падение напряжения на контуре будет равно нулю. Но падение напряжения на конденсаторе отдельно, индуктивности отдельно будет иметь место. Просто эти напряжения компенсируют друг друга в каждый момент времени. Напряжения на конденсаторе и катушке могут быть очень значительными. Одной из популярных ошибок при проектировании последовательного колебательного контура является неправильная оценка напряжения на конденсаторе. Напряжение может в разы, десятки, сотни раз превышать напряжение источника питания. На основе этого эффекта даже разработаны схемы повышающих преобразователей напряжения.

[Амплитудное значение напряжения на конденсаторе, В] = [Амплитудное значение силы тока через контур, А] * [ZC], где [ZC] = 1 / (2 * ПИ * [Частота сигнала, Гц] * [Емкость конденсатора, Ф])

Необходимо также обратить внимание, чтобы ток через последовательный контур не приводил к насыщению сердечника катушки индуктивности. В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие

Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д

В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие. Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д.

Практическое применение

Резонансные контуры широко используются как полосовые и режекторные фильтры — в усилителях, радиоприёмниках, а также в различных устройствах автоматики. Например, на самолётах Ил-62М, Ил-76 и установлены блоки регулирования частоты БРЧ-62БМ, в главном элементе которых — блоке измерения частоты БИЧ-1 — имеются два колебательных контура, настроенных на частоты 760 и 840 Гц. На них поступает напряжение с номинальной частотой 800 Гц от генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной — сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала — то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя.

Из чего он состоит?

Колебательный контур состоит из катушки и конденсатора. Кроме того, в нём также может присутствовать резистор (элемент с переменным сопротивлением). Катушка индуктивности (или соленоид, как её иногда называют) представляет собой стержень, на который наматываются несколько слоёв обмотки, которая, как правило, представляет собой медную проволоку. Именно этот элемент создаёт колебания в колебательном контуре. Стержень, находящийся в середине, часто называют дросселем, или сердечником, а катушку иногда именуют соленоидом.

Катушка колебательного контура создаёт колебания только при наличии запасённого заряда. При прохождении через неё тока она накапливает заряд, который затем отдаёт в цепь, если напряжение падает.

Провода катушки обычно имеют очень маленькое сопротивление, которое всегда остаётся постоянным. В цепи колебательного контура очень часто происходит изменение напряжения и силы тока. Это изменение подчиняется определённым математическим законам:

U = U0*cos(w*(t-t0) , где U — напряжение в данный момент времени t, U0 — напряжение во время t0, w — частота электромагнитных колебаний.

Колебательный контур

Другим неотъемлемым компонентом контура является электрический конденсатор. Это элемент, состоящий из двух обкладок, которые разделены между собой диэлектриком. При этом толщина слоя между обкладками меньше их размеров. Такая конструкция позволяет накапливать на диэлектрике электрический заряд, который потом можно отдать в цепь.

Отличие конденсатора от аккумулятора в том, что в нём не происходит превращения веществ под действием электрического тока, а происходит непосредственное накопление заряда в электрическом поле. Таким образом, с помощью конденсатора можно накопить достаточно большой заряд, отдавать который можно весь сразу. При этом сила тока в цепи сильно возрастает.

Колебательный контур

Также колебательный контур состоит из ещё одного элемента: резистора. Этот элемент обладает сопротивлением и предназначен для контролирования силы тока и напряжения в цепи. Если при постоянном напряжении увеличивать сопротивление резистора, то сила тока будет уменьшаться по закону Ома:

I = U/R , где I — сила тока, U — напряжение, R — сопротивление.

Колебательный контур

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​\( \varepsilon \)​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​\( \varphi_L=-\pi/2 \)​, а на конденсаторе \( \varphi_C=\pi/2 \)​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно! Резонансная частота не зависит от активного сопротивления ​\( R \)​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​\( (R\to0) \)​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Форма

На рисунке слева — Ш-образный сердечник, справа — П-образный. A — толщина сердечника, B — высота окна сердечника, C — ширина окна сердечника, D — ширина зуба.

Делая прокладку в сердечнике, не забудьте, что ее толщина должна быть вдвое меньше расчетного зазора, так как магнитная линия в Ш и П — образных сердечниках пересекает ее дважды.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Доброго дня. Можно ли применить методику для расчета моторного трехфазного дросселя (ПЧ+двигатель)? Какие особенности изготовления таких дросселей (например, взять три трансформатора и пр.)? Читать ответ…

Доброго здравия! По какой формуле включается предупреждение о недостаточности мощности сердечника? Читать ответ…

Здравствуйте! Я собираю сварочный инвертор по схеме из книги Негуляева (полумост резонансный), и пытался определить с помощью ваших онлайн-калькуляторов индуктивность дросселя резонанса, но в них надо подставлять известное значение индуктивности (и откуда, к слову, его взять если нет измерительных приборов) и получать витки. А мне то надо наоборот. Это нужно, чтобы попытать Читать ответ…

В расчёте дросселя, а именно определении зазора, есть расхождения около 30% в меньшую сторону. Как можете это прокомментировать. Читать ответ…

При токе 50-60 А на Ш образном сердечнике витки, расположенные в непосредственной близости к зазору начинают обугливаться. Любая железка, введённая в зазор просто плавится. Это же индукционка какая-то получается. Практика подсказывает, нужно как можно дальше удалять витки от зазора. Предпочтение в таких случаях отдаётся П — обр. сердечникам. Так ли это? Читать ответ…

Помимо непонятного выражения в формуле зазора, еще непонятно почему в других источниках приведены, кажется, какие-то иные расчеты? Вот например, в этой книге , я так понял, какой-то общий случай расчета, или почему-то другие они. Читать ответ…

Здравствуйте. А что значит выражение в формуле величины зазора в сердечнике? Читать ответ…

Спасибо за материал!
‘Провод 0.25мм’ — это диаметр или площадь сечения? Читать ответ…

Здравствуйте. Для сборки импульсного источника синусоидального напряжения расчитываю параметры дросселя L1. Имеющийся Ш-образный сердечник 20*28 N87 мал по размерам, как указывает онлайн расчет. Но в программе нет возможности по требуемым параметрам подобрать необходимый размер. Чтобы пойти и купить нужный. Подскажите или требуемые габаритные размеры или программку для выбора Читать ответ…

Здравствуйте, не могли бы вы помочь с расчётом дросселя для схемы опубликованной на вашем сайте: http://hw4.ru/circuitry-switching-sinus

В наличие имеется провод диаметром 0,5мм и ферритовые кольца B64290L0651X03
http://static.advonics.com/content/pdfs/221/7092193.pdf

Размер R22,1×13,7×12,5(mm)
Материал Т38
Начальная проницаемость 10 000

Номинальный вы Читать ответ…

Еще статьи

Изготовление дросселя, катушки индуктивности своими руками, самому, са…
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Конструирование (проектирование и расчет) источников питания и преобра…
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим…

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле…
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома…

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Пушпульный импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать пуш-пульный импульсный преобразователь напряжения. Как подавить п…

Повышающий импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать повышающий импульсный преобразователь напряжения. Как подавить пу…

Математическое описание процессов

Напряжение на идеальной катушке индуктивности при изменении протекающего тока:

uL=LdiLdt.{\displaystyle u_{L}=L{\frac {di_{L}}{dt}}.}

Ток, протекающий через идеальный конденсатор, при изменении напряжения на нём:

iC=CduCdt.{\displaystyle i_{C}=C{\frac {du_{C}}{dt}}.}

Из правил Кирхгофа, для цепи, составленной из параллельно соединённых конденсатора и катушки, следует:

uL+uC=,{\displaystyle u_{L}+u_{C}=0,} — для напряжений,

и

iC=iL{\displaystyle i_{C}=i_{L}} — для токов.

Совместно решая систему дифференциальных уравнений (дифференцируя одно из уравнений и подставляя результат в другое), получаем:

d2q(t)dt2+1LCq(t)={\displaystyle {\frac {d^{2}q(t)}{dt^{2}}}+{\frac {1}{LC}}q(t)=0.}

Это дифференциальное уравнение гармонического осциллятора с циклической частотой собственных колебаний ω=1LC{\displaystyle \omega ={\frac {1}{\sqrt {LC}}}} (она называется собственной частотой гармонического осциллятора).

Решением этого уравнения 2-го порядка является выражение, зависящее от двух начальных условий:

i(t)=Iasin⁡(ωt+φ),{\displaystyle i(t)=I_{a}\sin({\omega }t+\varphi ),}

где Ia{\displaystyle I_{a}} — некая постоянная, определяемая начальными условиями, называемая амплитудой колебаний, φ{\displaystyle \varphi } — также некоторая постоянная, зависящая от начальных условий, называемая начальной фазой.

Например, при начальных условиях φ={\displaystyle \varphi =0} и амплитуде начального тока Ia{\displaystyle I_{a}}решение сведётся к:

i(t)=Iasin⁡(ωt).{\displaystyle i(t)=I_{a}\sin({\omega }t).}

Решение может быть записано также в виде

i(t)=Ia1sin⁡(ωt)+Ia2cos⁡(ωt),{\displaystyle i(t)=I_{a1}\sin({\omega }t)+I_{a2}\cos({\omega }t),}

где Ia1{\displaystyle I_{a1}} и Ia2{\displaystyle I_{a2}} — некоторые константы, которые связаны с амплитудой Ia{\displaystyle I_{a}} и фазой φ{\displaystyle \varphi } следующими тригонометрическими соотношениями:

Ia1=Iacos⁡(φ),{\displaystyle I_{a1}=I_{a}\cos {(\varphi )},}
Ia2=Iasin⁡(φ).{\displaystyle I_{a2}=I_{a}\sin {(\varphi )}.}
Михаил Фирсов
Оцените автора
( Пока оценок нет )
Добавить комментарий